

Next Steps

Presented by Allan Wylie IDWR 5 December 2013

Outline

- Introduction
- Calibration Targets
- Adjustable Parameters
- Process

Calibration Targets

- River gains
 - Big Wood River
 - Silver Creek
 - Willow Creek
- Water levels in wells
- Underflow out of the model

River gains

- Continuous stations
 - Big Wood nr Ketchum
 - 4/2011 present
 - Big Wood River at Hailey
 - 7/1915 present
 - Big Wood River at Stanton Crossing
 - 9/1996 present
 - Silver Cr at Sportsman Access
 - 10/1974 9/2006
 - 10/2007 present
 - Willow Cr
 - 6/2006 present
- Seepage runs
 - August 2012
 - October 2012
 - March 2013

Near Ketchum vs. Hailey gage readings, 4/2011 - 7/2013

Nr Ketchum to Hailey reach gain (includes runoff from smaller tributaries)

Hailey to Stanton Crossing (includes smaller tributaries)

Flow in Big Wood River

- With the stream flow routing package flow in the river can be used as a calibration target
- Possible additional targets could include making sure that the river is dry in the appropriate places at the appropriate times
 - Dry is not a continuous function
 - More on this later

Water levels in wells

 Most wells don't have many measurements during the calibration period

01S 19E 03CCB2

DAHO Department of Water Resources

Adjustable Parameters

- Aquifer properties
 - Hydraulic conductivity
 - Pilot points
 - Specific yield
 - Pilot points
 - Riverbed conductance
 - Drain conductance
- Components of water budget
 - ET
 - By irrigation entity
 - Tributary inflow
 - By tributary valley
 - Canal seepage
 - By irrigation entity

Pilot Points

- Estimate hydraulic conductivity (K) or spacific yield (SY) at pilot points
- Interpolate values between pilot points

Pilot Points

Riverbed Conductance (RBC)

Assign RBC by reach

Evapotranspiration (ET)

- Assign ET adjustment factors by entity
 - (model-start)/start

Tributary valley inflow (TRB)

 Assign TRB adjustment tributary valley

Canal Seepage (CNL)

 Assign CNL adjustment factors by entity

- Parameter ESTimation software (PEST) 'http://www.pesthomepage. org/'
- PEST is the industry
 standard software package
 for parameter estimation
 and uncertainty analysis of
 complex environmental and
 other computer models.
- PEST does not have a
 Graphical User Interface
 (GUI), it works from the
 command line.

Parameter #1

- Simple 2 parameter model
- Populate jacobian matrix
 - Adjust each parameter record impact of adjustment on every observation
- Calculate upgrade vector
- Move down upgrade vector comparing model output with field observations
- When match stops improving, stop and repopulate jacobian matrix
- etc

- Jacobian matrix
 - Change between model output and field observations with respect to change in model parameters
- Best if model output is continuous
 - i.e. decrease non-irrigated recharge results in lower water levels at well X
 - What if well goes dry?
 - Results in non-continuous output?
 - Wells actually go dry
 - What value do we hand to PEST?

Jacobian matrix

- Change between model output and field observations with respect to change in model parameters
- Best if function is continuous
 - i.e. decrease non-irrigated recharge results in lower water levels at well X
 - What if well goes dry?
 - Results in non-continuous output?
 - Wells actually go dry
 - What value do we hand to PEST?

Parameter #1

- Populate jacobian matrix using fixed transmissivity model
 - Wells can not go dry
- Calculate upgrade vector using jacobian populated with fixed transmissivity model
- Evaluate upgrade vector using variable transmissivity model
 - Wells can go dry

Conclusions

- Calibration Targets
 - River gains and losses
 - · Flow in river
 - Water levels in wells
 - Outflow from model
- Adjustable Parameters
 - Hydraulic conductivity (K)
 - Specific yield (Sy)
 - Riverbed conductance (RBC)
 - Drain conductance (DC)
 - Evapotransporation adjustment factor (ET)
 - Tributary inflow adjustment factor (TRB)
 - Canal seepage factor (CNL)